Heliyon (May 2024)
Prognostic model and ceRNA network of m7G- and radiosensitivity-related genes in hepatocellular carcinoma
Abstract
Background: Radiotherapy is an effective treatment for hepatocellular carcinoma (HCC). Recent studies indicated that N7-methylguanosine (m7G)-associated genes are involved in radioresistance and prognosis of HCC. However, the prognostic value and underlying mechanism of m7G-and radiosensitivity-associated genes are still lacking. Methods: The related statistics of HCC were downloaded from The Cancer Genome Atlas (TCGA). M7G- and radiosensitivity-associated genes were screened and evaluated using correlation, differential, univariate, and multivariate analysis. The least absolute shrinkage and selection operator (LASSO) algorithm was used to establish a prognostic model. Prognostic efficacy, functional analysis, immune cell infiltration,and drug sensitivity of the prognostic model were assessed. The ceRNA network was predicted and evaluated through the StarBase database, correlation analysis, expression analysis, and survival analysis. Result: METTL1, EIF3D, NCBP2, and WDR4 participated in prognosis model construction. The favorable prediction efficiency has been verified in both the training and verification sets. Different risk groups have differences in prognosis outcome, function analysis, immune cell infiltration, and drug sensitivity. NCBP2 can be used to predict the prognosis and has excellent potential in immunotherapy. A prognostic ceRNA network based on the NCBP2/miR-122-5p axis was established. Conclusion: The prognosis model of m7G- and radiosensitivity-related genes is constructed, and widely used in clinical prognosis, immunotherapy, and drug therapy. NCBP2, as a hub gene, may be a prognostic biomarker for HCC and is related to immunotherapy. Establishing the NCBP2/miR-122-5p axis helps study the mechanism of ceRNA and provides new ideas for finding a new candidate biomarker.