Remote Sensing (Nov 2018)
Quantitative Assessment of Desertification in an Arid Oasis Using Remote Sensing Data and Spectral Index Techniques
Abstract
Desertification is an environmental problem worldwide. Remote sensing data and technique offer substantial information for mapping and assessment of desertification. Desertification is one of the most serious forms of environmental threat in Morocco, especially in the oases in the south-eastern part of the country. This study aims to map the degree of desertification in middle Draa Valley in 2017 using a Sentinel-2 MSI (multispectral instrument) image. Firstly, three indices, namely, tasselled cap brightness (TCB), greenness (TCG) and wetness (TCW) were extracted using the tasselled cap transformation method. Secondly, other indices, such as normalized difference vegetation index (NDVI) and albedo, were retrieved. Thirdly, a linear regression analysis was performed on NDVI⁻albedo, TCG⁻TCB and TCW⁻TCB combinations. Results showed a higher correlation between TCW and TCB (r = −0.812) than with that of the NDVI⁻albedo (r = −0.50). On the basis of this analysis, a desertification degree index was developed using the TCW⁻TCB feature space classification. A map of desertification grades was elaborated and divided into five classes, namely, nondesertification, low, moderate, severe and extreme levels. Results indicated that only 6.20% of the study area falls under the nondesertification grade, whereas 26.92% and 32.85% fall under the severe and extreme grades, respectively. The employed method was useful for the quantitative assessment of desertification with an overall accuracy of 93.07%. This method is simple, robust, powerful, and easy to use for the management and protection of the fragile arid and semiarid lands.
Keywords