Green Energy & Environment (Dec 2023)
Rare earth metal based DES assisted the VPO synthesis for n-butane selective oxidation toward maleic anhydride
Abstract
Deep eutectic solvents (DESs) are now considered a new class of ionic liquid analogs that have been generously used in various fields. Herein, vanadium phosphorus oxide (VPO) catalysts are synthesized in combination with a deep eutectic solvent containing rare earth metal (rE-DES), and their catalytic performance in n-butane selective oxidation to produce maleic anhydride (MA) is evaluated. The rE-DES is produced from the interaction of choline chloride (ChCl) and rare earth metal salts (Cerium, Europium, Lanthanum, and Samarium metal salt) (ChCl:rE = 1:0.5–1:3) under mild conditions. It was found that DESs served as structural modifiers and electronic promoters during VPO synthesis. It regulated the chemical state of the catalyst surface, such as the vanadium valence state, acid-base properties, and ratios of V4+/V5+, Lat–O/Sur–O and P/V. Various characterization techniques, such as FT-IR, DSC, XRD, SEM, EDS, TEM, Raman, TGA, NH3-TPD, and XPS, were used to examine its physical and chemical characteristics. These characteristics were correlated with the catalytic performance. The VPO catalyst modified by rE-DES showed a significant enhancement of n-butane conversion and MA selectivity while suppressing the selectivity of CO and CO2 as well as the CO/CO2 ratio compared to the unpromoted VPO catalyst. Especially for Ce-DES-VPO, it increased the n-butane conversion and MA mass yield up to approximately 11% and 10%, respectively. In addition, we evaluated the catalytic performance under different activation atmospheres.