PLoS ONE (Jan 2012)
Genome-wide bovine H3K27me3 modifications and the regulatory effects on genes expressions in peripheral blood lymphocytes.
Abstract
BackgroundGene expression of lymphocytes was found to be influenced by histone methylation in mammals and trimethylation of lysine 27 on histone H3 (H3K27me3) normally represses genes expressions. Peripheral blood lymphocytes are the main source of somatic cells in the milk of dairy cows that vary frequently in response to the infection or injury of mammary gland and number of parities.MethodsThe genome-wide status of H3K27me3 modifications on blood lymphocytes in lactating Holsteins was performed via ChIP-Seq approach. Combined with digital gene expression (DGE) technique, the regulation effects of H3K27me3 on genes expressions were analyzed.ResultsThe ChIP-seq results showed that the peaks of H3K27me3 in cows lymphocytes were mainly enriched in the regions of up20K (~50%), down20K (~30%) and intron (~28%) of the genes. Only ~3% peaks were enriched in exon regions. Moreover, the highest H3K27me3 modification levels were mainly around the 2 Kb upstream of transcriptional start sites (TSS) of the genes. Using conjoint analysis with DGE data, we found that H3K27me3 marks tended to repress target genes expressions throughout whole gene regions especially acting on the promoter region. A total of 53 differential expressed genes were detected in third parity cows compared to first parity, and the 25 down-regulated genes (PSEN2 etc.) were negatively correlated with H3K27me3 levels on up2Kb to up1Kb of the genes, while the up-regulated genes were not showed in this relationship.ConclusionsThe first blueprint of bovine H3K27me3 marks that mediates gene silencing was generated. H3K27me3 plays its repressed role mainly in the regulatory region in bovine lymphocytes. The up2Kb to up1Kb region of the down-regulated genes in third parity cows could be potential target of H3K27me3 regulation. Further studies are warranted to understand the regulation mechanisms of H3K27me3 on somatic cell count increases and milk losses in latter parities of cows.