Nanotechnology, Science and Applications (May 2017)

Synthesis, characterization, and in vitro activity against Candida spp. of fluconazole encapsulated on cationic and conventional nanoparticles of poly(lactic-co-glycolic acid)

  • Gómez-Sequeda N,
  • Torres R,
  • Ortiz C

Journal volume & issue
Vol. Volume 10
pp. 95 – 104

Abstract

Read online

Nicolás Gómez-Sequeda,1 Rodrigo Torres,2 Claudia Ortiz3 1School of Biology, 2School of Chemistry, Faculty of Sciences, 3School of Microbiology, Faculty of Health, Universidad Industrial de Santander, Bucaramanga, Santander, Colombia Abstract: In this study, nanoparticles (NPs) of poly(lactic-co-glycolic acid) (PLGA) loaded with fluconazole (FLZ) and FLZ-NPs coated with the cationic polymer polyethylenimine (PEI) (FLZ-NP-PEI) were synthetized in order to improve antimycotic activity against four strains of Candida spp. of clinical relevance. FLZ-NPs and FLZ-NP-PEI were synthesized by double emulsion solvent-diffusion (DES-D) and characterized. Minimum inhibitory concentration (MIC50) and minimum fungicide concentration (MFC) were determined in vitro by culturing Candida strains in the presence of these nanocompounds. FLZ-NPs were spherical in shape with hydrodynamic sizes of ~222 nm and surface charge of -11.6 mV. The surface charges of these NPs were successfully modified using PEI (FLZ-NP-PEI) with mean hydrodynamic sizes of 281 nm and surface charge of 23.5 mV. The efficiency of encapsulation (~53%) and a quick release of FLZ (≥90% after 3 h) were obtained. Cytotoxicity assay showed a good cell viability for FLZ-NPs (≥86%), and PEI-modified NPs presented a decrease in cell viability (~38%). FLZ-NPs showed an increasing antifungal activity of FLZ for sensitive (Candida parapsilosis ATCC22019 and Candida albicans ATCC10231, MIC50 =0.5 and 0.1 µg/mL, respectively) and resistant strains (Candida glabrata EMLM14 and Candida krusei ATCC6258, MIC50 =0.1 and 0.5 µg/mL, respectively). FLZ-NP-PEI showed fungicidal activity even against C. glabrata and C. krusei (MFC =4 and 8 µg/mL, respectively). MIC50 values showed best results for FLZ-NPs and FLZ-NP-PEI. Nevertheless, only FLZ-NP-PEI displayed fungicidal activity against the studied strains. Keywords: drug delivery systems, double emulsion diffusion, nanoparticles, minimal inhibitory concentration, minimal fungicide concentration, polyethylenimine

Keywords