ISPRS International Journal of Geo-Information (Jan 2023)

Classification of Seismaesthesia Information and Seismic Intensity Assessment by Multi-Model Coupling

  • Qingzhou Lv,
  • Wanzeng Liu,
  • Ran Li,
  • Hui Yang,
  • Yuan Tao,
  • Mengjiao Wang

DOI
https://doi.org/10.3390/ijgi12020046
Journal volume & issue
Vol. 12, no. 2
p. 46

Abstract

Read online

Earthquake disaster assessment is one of the most critical aspects in reducing earthquake disaster losses. However, traditional seismic intensity assessment methods are not effective in disaster-stricken areas with insufficient observation data. Social media data contain a large amount of disaster information with the advantages of timeliness and multiple temporal-spatial scales, opening up a new channel for seismic intensity assessment. Based on the earthquake disaster information on the microblog platform obtained by the network technique, a multi-model coupled seismic intensity assessment method is proposed, which is based on the BERT-TextCNN model, constrained by the seismaesthesia intensity attenuation model, and supplemented by the method of ellipse-fitting inverse distance interpolation. Taking four earthquakes in Sichuan Province as examples, the earthquake intensity was evaluated in the affected areas from the perspective of seismaesthesia. The results show that (1) the microblog data contain a large amount of earthquake information, which can help identify the approximate scope of the disaster area; (2) the influences of the subjectivity and uneven spatial distribution of microblog data on the seismic intensity assessment can be reduced by using the seismaesthesia intensity attenuation model and the method of ellipse-fitting inverse distance interpolation; and (3) the accuracy of seismic intensity assessment based on the coupled model is 70.81%. Thus, the model has higher accuracy and universality. It can be used to assess seismic intensity in multiple regions and assist in the formulation of earthquake relief plans.

Keywords