3D Printing in Medicine (Sep 2022)

Translational design for limited resource settings as demonstrated by Vent-Lock, a 3D-printed ventilator multiplexer

  • Helen Xun,
  • Christopher Shallal,
  • Justin Unger,
  • Runhan Tao,
  • Alberto Torres,
  • Michael Vladimirov,
  • Jenna Frye,
  • Mohit Singhala,
  • Brockett Horne,
  • Bo Soo Kim,
  • Broc Burke,
  • Michael Montana,
  • Michael Talcott,
  • Bradford Winters,
  • Margaret Frisella,
  • Bradley S. Kushner,
  • Justin M. Sacks,
  • James K. Guest,
  • Sung Hoon Kang,
  • Julie Caffrey

DOI
https://doi.org/10.1186/s41205-022-00148-6
Journal volume & issue
Vol. 8, no. 1
pp. 1 – 17

Abstract

Read online

Abstract Background Mechanical ventilators are essential to patients who become critically ill with acute respiratory distress syndrome (ARDS), and shortages have been reported due to the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Methods We utilized 3D printing (3DP) technology to rapidly prototype and test critical components for a novel ventilator multiplexer system, Vent-Lock, to split one ventilator or anesthesia gas machine between two patients. FloRest, a novel 3DP flow restrictor, provides clinicians control of tidal volumes and positive end expiratory pressure (PEEP), using the 3DP manometer adaptor to monitor pressures. We tested the ventilator splitter circuit in simulation centers between artificial lungs and used an anesthesia gas machine to successfully ventilate two swine. Results As one of the first studies to demonstrate splitting one anesthesia gas machine between two swine, we present proof-of-concept of a de novo, closed, multiplexing system, with flow restriction for potential individualized patient therapy. Conclusions While possible, due to the complexity, need for experienced operators, and associated risks, ventilator multiplexing should only be reserved for urgent situations with no other alternatives. Our report underscores the initial design and engineering considerations required for rapid medical device prototyping via 3D printing in limited resource environments, including considerations for design, material selection, production, and distribution. We note that optimization of engineering may minimize 3D printing production risks but may not address the inherent risks of the device or change its indications. Thus, our case report provides insights to inform future rapid prototyping of medical devices.

Keywords