Journal of Translational Medicine (Oct 2019)

Analysis of prognosis, genome, microbiome, and microbial metabolome in different sites of colorectal cancer

  • Yang Xi,
  • Pan Yuefen,
  • Wu Wei,
  • Qi Quan,
  • Zhuang Jing,
  • Xu Jiamin,
  • Han Shuwen

DOI
https://doi.org/10.1186/s12967-019-2102-1
Journal volume & issue
Vol. 17, no. 1
pp. 1 – 22

Abstract

Read online

Abstract Background The colorectum includes ascending colon, transverse colon, descending colon, sigmoid colon, and rectum. Different sites of colorectal cancer (CRC) are different in many aspects, including clinical symptoms, biological behaviour, and prognosis. Purpose This study aimed to analyse prognosis, genes, bacteria, fungi, and microbial metabolome in different sites of CRC. Methods The Surveillance, Epidemiology, and End Results (SEER) database and STAT were used to statistically describe and analyse the prognosis in different sites of CRC. RNA sequences of CRC from Broad Institute’s GDAC Firehose were re-annotated and reanalysed based on different sites using weighted gene co-expression network analysis (WGCNA). The Kaplan–Meier method was used to analyse the prognosis and Cytoscape was used to construct a drug-target network based on DGIdb databases. Bacterial 16S V3–V4 and fungal ITS V3–V4 ribosomal RNA genes of stool samples were sequenced. Gas chromatography/mass spectrometry (GS/MS) was performed to detect the microbial metabolites in stool samples. Bioinformatics analysis was performed to compare distinct gut microorganisms and microbial metabolites between rectal and sigmoid cancers. Results The prognosis in CRC with different sites is significantly different. The closer to the anus predicted longer survival time. The difference between genes and co-expression pairs in CRC with different sites were constructed. The relative abundance of 112 mRNAs and 26 lncRNAs correlated with the sites of CRC were listed. Nine differentially expressed genes at different sites of CRC were correlated with prognosis. A drug-gene interaction network contained 227 drug-gene pairs were built. The relative abundance of gut bacteria and gut fungus, and the content of microbe-related metabolites were statistically different between rectal and sigmoid cancers. Conclusions There are many differences in prognosis, genome, drug targets, gut microbiome, and microbial metabolome in different colorectal cancer sites. These findings may improve our understanding of the role of the CRC sites in personalized and precision medicine.

Keywords