Remote Sensing (Jun 2024)

Landslide Hazard Analysis Combining BGA-Net-Based Landslide Susceptibility Perception and Small Baseline Subset Interferometric Synthetic Aperture Radar in the Baige Section in the Upper Reaches of Jinsha River

  • Leyi Su,
  • Liang Zhang,
  • Yuannan Gui,
  • Yan Li,
  • Zhi Zhang,
  • Lu Xu,
  • Dongping Ming

DOI
https://doi.org/10.3390/rs16122125
Journal volume & issue
Vol. 16, no. 12
p. 2125

Abstract

Read online

The geological and topographic conditions in the upper reaches of the Jinsha River are intricate, with frequent occurrences of landslides. Landslide Susceptibility Prediction (LSP) in this area is a crucial aspect of geological disaster risk management. This study constructs an LSP model using a Convolutional Neural Network (CNN) based on a Bilateral Aggregation Guidance (BAG) strategy, termed BGA-Net. A comprehensive landslide hazard analysis, integrating static landslide susceptibility zonation with dynamic surface deformation monitoring, was therefore conducted. The study area selected was the upper reaches of the Jinsha River, particularly the site of the Baige landslide. The BGA-Net model was first proposed for LSP generation, achieving an accuracy exceeding 85%, while the Small Baseline Subset Interferometric Synthetic Aperture Radar (SBAS-InSAR) technology was jointly applied to comprehensively analyze the dynamic geological hazard risk at a regional scale. The final results were presented in a lookup table format and mapped to delineate and grade each risk level. The results show the method is practical, with high feasibility. Compared with traditional machine learning methods, the BGA-strategy-oriented CNN model more effectively differentiated the extremely low- and extremely high-susceptibility areas, enhancing decision-making processes.

Keywords