Energies (Sep 2019)

Thermal Performance Optimization and Experimental Evaluation of Vacuum-Glazed Windows Manufactured via the In-Vacuum Method

  • Jaesung Park,
  • Myunghwan Oh,
  • Chul-sung Lee

DOI
https://doi.org/10.3390/en12193634
Journal volume & issue
Vol. 12, no. 19
p. 3634

Abstract

Read online

Windows are essential in buildings; however, they have poor thermal performance, so extensive research has been conducted on improving their performance. In this study, we developed vacuum-glazed windows with excellent insulation via the in-vacuum method, which shortens the manufacturing time and vacuuming degree considerably. In addition, the configuration of the pillars, low-emissivity (low-e) coating, and frame from a thermal performance perspective was experimentally optimized. The results revealed that the optimal pillar placement spacing is 40 mm and that the low-e coating surface must be located inside the vacuum layer to maximize insulation performance. The vacuum-glazed window produced by the in-vacuum method was applied to an actual residential building to investigate its thermal performance, which was compared with that of a triple-glazed window. The results showed that the center-of-glazing heat flow of the vacuum-glazed window was approximately 0.8 W/m2K lower than that of the triple-glazed window. The difference between the average indoor and outdoor surface temperatures during the nighttime was found to be up to 35.1 °C for the vacuum-glazed window and 23.1 °C for the triple-glazed window. Therefore, the energy efficiency of the building can be greatly improved by applying vacuum windows manufactured via the in-vacuum method and optimized for the best thermal performance.

Keywords