Current Issues in Molecular Biology (Dec 2023)
Amelioration of Motor Performance and Nigrostriatal Dopamine Cell Volume Using a Novel Far-Infrared Ceramic Blanket in an A53T Alpha-Synuclein Transgenic Parkinson’s Disease Mouse Model
Abstract
We had attended a Parkinson’s Disease (PD) patient for a non-healing wound who reported a marked decrease in his hand tremor and freezing of gait when his wound was exposed to a ceramic far-field infrared (cFIR) blanket. PD is the most frequent motor disorder and the second most frequent neurodegenerative disease after Alzheimer’s Disease (AD). The tremor, rigidity, and slowness of movement associated with Parkinson’s disease (PD) affect up to 10 million people throughout the world, and the major contributing factor to the pathogenesis of PD is the accumulation and propagation of pathological α-synuclein (α-Syn) and the death of dopaminergic cells in the Nigrostriatal system. Efforts to slow or stop its spreading have resulted in the development and use of dopaminergic drug replacement therapy. Unfortunately, there is a loss of about 70–80% of substantia nigral dopaminergic neurons in patients by the time they are diagnosed with PD, and various dopaminergic drugs provide only temporary relief of their motor symptoms. There are limitations in treating PD with many conventional medications, necessitating a combination of pharmaceutical and non-pharmacological therapy as an essential adjunct to better address the health and welfare of PD patients. We used male adult A53T alpha-synuclein transgenic mice exposed to a ceramic far-infrared blanket. Motor activity was assessed using the rotarod apparatus, and mouse brains were examined to quantify the fluorescence intensities of the immunostained samples. A53T alpha-synuclein transgenic mice had a significantly shorter time stay on the rotating bar than the wild-type mice (B6C3H). The rotarod performance was significantly improved in A53T alpha-synuclein transgenic mice exposed to cFIR as well as B6C3H healthy wild mice exposed to cFIR. There was a significant statistical and substantive increase in the cellular composition of the Striatum and substantia nigra of cFIR-treated mice. Improvement in motor performance is seen in PD mice and wild mice and is associated with increases in cell volume in the substantia nigra and striatum after treatment.
Keywords