Nature Communications (Dec 2017)

The Kalanchoë genome provides insights into convergent evolution and building blocks of crassulacean acid metabolism

  • Xiaohan Yang,
  • Rongbin Hu,
  • Hengfu Yin,
  • Jerry Jenkins,
  • Shengqiang Shu,
  • Haibao Tang,
  • Degao Liu,
  • Deborah A. Weighill,
  • Won Cheol Yim,
  • Jungmin Ha,
  • Karolina Heyduk,
  • David M. Goodstein,
  • Hao-Bo Guo,
  • Robert C. Moseley,
  • Elisabeth Fitzek,
  • Sara Jawdy,
  • Zhihao Zhang,
  • Meng Xie,
  • James Hartwell,
  • Jane Grimwood,
  • Paul E. Abraham,
  • Ritesh Mewalal,
  • Juan D. Beltrán,
  • Susanna F. Boxall,
  • Louisa V. Dever,
  • Kaitlin J. Palla,
  • Rebecca Albion,
  • Travis Garcia,
  • Jesse A. Mayer,
  • Sung Don Lim,
  • Ching Man Wai,
  • Paul Peluso,
  • Robert Van Buren,
  • Henrique Cestari De Paoli,
  • Anne M. Borland,
  • Hong Guo,
  • Jin-Gui Chen,
  • Wellington Muchero,
  • Yanbin Yin,
  • Daniel A. Jacobson,
  • Timothy J. Tschaplinski,
  • Robert L. Hettich,
  • Ray Ming,
  • Klaus Winter,
  • James H. Leebens-Mack,
  • J. Andrew C. Smith,
  • John C. Cushman,
  • Jeremy Schmutz,
  • Gerald A. Tuskan

DOI
https://doi.org/10.1038/s41467-017-01491-7
Journal volume & issue
Vol. 8, no. 1
pp. 1 – 15

Abstract

Read online

Crassulacean acid metabolism (CAM) is a metabolic adaptation of photosynthesis that enhances water use efficiency. Here, via genomic analysis of Kalanchoë, the authors provide evidence for convergent evolution of protein sequence and temporal gene expression underpinning the multiple independent emergences of CAM.