JPhys Energy (Jan 2023)
2023 Roadmap on molecular modelling of electrochemical energy materials
- Chao Zhang,
- Jun Cheng,
- Yiming Chen,
- Maria K Y Chan,
- Qiong Cai,
- Rodrigo P Carvalho,
- Cleber F N Marchiori,
- Daniel Brandell,
- C Moyses Araujo,
- Ming Chen,
- Xiangyu Ji,
- Guang Feng,
- Kateryna Goloviznina,
- Alessandra Serva,
- Mathieu Salanne,
- Toshihiko Mandai,
- Tomooki Hosaka,
- Mirna Alhanash,
- Patrik Johansson,
- Yun-Ze Qiu,
- Hai Xiao,
- Michael Eikerling,
- Ryosuke Jinnouchi,
- Marko M Melander,
- Georg Kastlunger,
- Assil Bouzid,
- Alfredo Pasquarello,
- Seung-Jae Shin,
- Minho M Kim,
- Hyungjun Kim,
- Kathleen Schwarz,
- Ravishankar Sundararaman
Affiliations
- Chao Zhang
- ORCiD
- Department of Chemistry—Ångström Laboratory, Uppsala University , Box 538, 75121 Uppsala, Sweden; Wallenberg Initiative Materials Science for Sustainability, Uppsala University , 75121 Uppsala, Sweden
- Jun Cheng
- ORCiD
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, People’s Republic of China
- Yiming Chen
- ORCiD
- Center for Nanoscale Materials, Argonne National Laboratory , 9700 Cass Ave, Lemont, IL 60439, United States of America
- Maria K Y Chan
- ORCiD
- Center for Nanoscale Materials, Argonne National Laboratory , 9700 Cass Ave, Lemont, IL 60439, United States of America
- Qiong Cai
- ORCiD
- School of Chemistry and Chemical Engineering, Faculty of Engineering and Physical Sciences, University of Surrey , Guildford GU2 7XH, United Kingdom; The Faraday Institution, Quad One , Harwell Campus, Didcot, OX11 0RA, United Kingdom
- Rodrigo P Carvalho
- ORCiD
- Department of Chemistry—Ångström Laboratory, Uppsala University , Box 538, 75121 Uppsala, Sweden; Materials Theory Division, Department of Physics and Astronomy, Uppsala University , Box 516, 75120 Uppsala, Sweden
- Cleber F N Marchiori
- ORCiD
- Department of Engineering and Physics, Karlstad University , 65188 Karlstad, Sweden
- Daniel Brandell
- ORCiD
- Department of Chemistry—Ångström Laboratory, Uppsala University , Box 538, 75121 Uppsala, Sweden
- C Moyses Araujo
- ORCiD
- Materials Theory Division, Department of Physics and Astronomy, Uppsala University , Box 516, 75120 Uppsala, Sweden; Department of Engineering and Physics, Karlstad University , 65188 Karlstad, Sweden
- Ming Chen
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology , Wuhan 430074, People’s Republic of China
- Xiangyu Ji
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology , Wuhan 430074, People’s Republic of China
- Guang Feng
- ORCiD
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology , Wuhan 430074, People’s Republic of China
- Kateryna Goloviznina
- ORCiD
- Sorbonne Université, CNRS, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux , PHENIX, F-75005 Paris, France
- Alessandra Serva
- ORCiD
- Sorbonne Université, CNRS, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux , PHENIX, F-75005 Paris, France
- Mathieu Salanne
- ORCiD
- Sorbonne Université, CNRS, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux , PHENIX, F-75005 Paris, France; Institut Universitaire de France (IUF) , 75231 Paris, France
- Toshihiko Mandai
- ORCiD
- Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science , 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Tomooki Hosaka
- Department of Applied Chemistry, Tokyo University of Science , 1-3 Kagurazaka, Shinjuku, Tokyo, Japan
- Mirna Alhanash
- Department of Physics, Chalmers University of Technology , 412 96 Göteborg, Sweden
- Patrik Johansson
- ORCiD
- Department of Physics, Chalmers University of Technology , 412 96 Göteborg, Sweden; Alistore-ERI , CNRS FR 3104, 15 Rue Baudelocque, 80039 Amiens, France
- Yun-Ze Qiu
- Department of Chemistry, Tsinghua University , Beijing 100084, People’s Republic of China
- Hai Xiao
- ORCiD
- Department of Chemistry, Tsinghua University , Beijing 100084, People’s Republic of China
- Michael Eikerling
- Forschungszentrum Jülich GmbH and RWTH Aachen University , Jülich, Germany
- Ryosuke Jinnouchi
- ORCiD
- Toyota Central R&D Labs., Inc. , 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan
- Marko M Melander
- Department of Chemistry, University of Jyväskylä , Jyväskylä, Finland
- Georg Kastlunger
- Department of Physics, Technical University of Denmark , Lyngby, Denmark
- Assil Bouzid
- ORCiD
- Institut de Recherche sur les Céramiques (IRCER), Centre Européen de la Céramique , 12 Rue Atlantis, Limoges, 87068, France
- Alfredo Pasquarello
- ORCiD
- Chaire de Simulation à l’Echelle Atomique (CSEA), Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne, Switzerland
- Seung-Jae Shin
- Department of Chemistry, Korea Advanced Institute of Science and Technology , Daejeon 34141, Republic of Korea; Department of Materials Science and Engineering, Yonsei University , Seoul 03722, Republic of Korea
- Minho M Kim
- ORCiD
- Department of Chemistry, Korea Advanced Institute of Science and Technology , Daejeon 34141, Republic of Korea
- Hyungjun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology , Daejeon 34141, Republic of Korea
- Kathleen Schwarz
- ORCiD
- National Institute of Standards and Technology , Gaithersburg, MD, United States of America
- Ravishankar Sundararaman
- ORCiD
- Rensselaer Polytechnic Institute , Troy, NY, United States of America
- DOI
- https://doi.org/10.1088/2515-7655/acfe9b
- Journal volume & issue
-
Vol. 5,
no. 4
p. 041501
Abstract
New materials for electrochemical energy storage and conversion are the key to the electrification and sustainable development of our modern societies. Molecular modelling based on the principles of quantum mechanics and statistical mechanics as well as empowered by machine learning techniques can help us to understand, control and design electrochemical energy materials at atomistic precision. Therefore, this roadmap, which is a collection of authoritative opinions, serves as a gateway for both the experts and the beginners to have a quick overview of the current status and corresponding challenges in molecular modelling of electrochemical energy materials for batteries, supercapacitors, CO _2 reduction reaction, and fuel cell applications.
Keywords
- electrochemical interfaces
- density-functional theory
- molecular dynamics simulation
- electrochemical energy storage
- machine learning
- electrocatalysis