PLoS ONE (Jan 2019)
Assessment of the load-velocity profile in the free-weight prone bench pull exercise through different velocity variables and regression models.
Abstract
This aims of this study were (I) to determine the velocity variable and regression model which best fit the load-velocity relationship during the free-weight prone bench pull exercise, (II) to compare the reliability of the velocity attained at each percentage of the one-repetition maximum (1RM) between different velocity variables and regression models, and (III) to compare the within- and between-subject variability of the velocity attained at each %1RM. Eighteen men (14 rowers and four weightlifters) performed an incremental test during the free-weight prone bench pull exercise in two different sessions. General and individual load-velocity relationships were modelled through three velocity variables (mean velocity [MV], mean propulsive velocity [MPV] and peak velocity [PV]) and two regression models (linear and second-order polynomial). The main findings revealed that (I) the general (Pearson's correlation coefficient [r] range = 0.964-0.973) and individual (median r = 0.986 for MV, 0.989 for MPV, and 0.984 for PV) load-velocity relationships were highly linear, (II) the reliability of the velocity attained at each %1RM did not meaningfully differ between the velocity variables (coefficient of variation [CV] range = 2.55-7.61% for MV, 2.84-7.72% for MPV and 3.50-6.03% for PV) neither between the regression models (CV range = 2.55-7.72% and 2.73-5.25% for the linear and polynomial regressions, respectively), and (III) the within-subject variability of the velocity attained at each %1RM was lower than the between-subject variability for the light-moderate loads. No meaningful differences between the within- and between-subject CVs were observed for the MV of the 1RM trial (6.02% vs. 6.60%; CVratio = 1.10), while the within-subject CV was lower for PV (6.36% vs. 7.56%; CVratio = 1.19). These results suggest that the individual load-MV relationship should be determined with a linear regression model to obtain the most accurate prescription of the relative load during the free-weight prone bench pull exercise.