Ecotoxicology and Environmental Safety (Feb 2022)

Enhanced photocatalytic degradation of paraben preservative over designed g-C3N4/BiVO4 S-scheme system and toxicity assessment

  • Chenyan Hu,
  • Maosheng Tian,
  • Liqing Wu,
  • Lianguo Chen

Journal volume & issue
Vol. 231
p. 113175

Abstract

Read online

Paraben preservatives have been listed as emerging pollutants due to their ubiquity in various environmental matrices, especially the water bodies. How to efficiently and practically eliminate these paraben pollutants is therefore of great importance. Herein, a designed S-scheme heterojunction photocatalyst, consisting of graphitic carbon nitride (g-C3N4) and monoclinic bismuth vanadate (BiVO4), was fabricated by a facile hydrothermal synthesis and employed to treat benzyl-paraben (BzP). TEM and XPS analysis testified the intimate interaction between g-C3N4 and BiVO4, and the consequently smoothed interfacial charge transfer rendered the feasible recombination of the photoexcited electrons (from BiVO4) and holes (from g-C3N4). The as-established S-scheme system enabled the left g-C3N4 electrons and BiVO4 holes to maintain the high redox abilities and accelerated the charge separation concurrently. In particular, the g-C3N4/BiVO4 composite generated much higher photocurrent response as compared with pure g-C3N4 and BiVO4, highlighting the improved separation of photoinduced charges. Therefore, under visible light and natural solar light irradiation, the g-C3N4/BiVO4 composite showed the significantly enhanced photocatalytic degradation of BzP, which was further optimized with 5 wt% g-C3N4 in the composite. According to the Mott–Schottky plots and identified active species, the mechanism of the g-C3N4/BiVO4 S-scheme heterojunction system was illustrated. In addition, during the photocatalytic degradation process, the acute toxicity of the reaction solutions on zebrafish embryos was notably reduced. In conclusion, the demonstrated strategy to enhance the photocatalytic performance by designing S-scheme heterostructure may provide more insights into the development of high-efficiency photocatalyst towards the solar energy utilization and environmental treatment. Furthermore, photocatalytic degradation had been proved to be an efficient method for eliminating the ecological risk of paraben pollutants, warranting more attention in future work.

Keywords