Записки Горного института (Jul 2024)
Lithification of leachate from municipal solid waste landfills with blast furnace slag
Abstract
The article presents an alternative method of utilization of blast furnace slag and leachate from solid municipal waste landfills, the formation of which occurs during the infiltration of atmospheric precipitation through the thickness of deposited waste. The method is based on the conversion of leachate from the liquid phase to the solid aggregate state by lithification using blast furnace slag as an astringent material. The hydraulic activity of slag, which depends on the amount of oxides contained in it, has been estimated. The investigated slag belongs to the 3rd grade, which confirms the possibility of its use as an astringent material. The filtrate was analyzed for the content of various elements, and the maximum permissible concentrations for each element were found to be exceeded. Chemical and biological oxygen demand were determined, and critically high values were installed (17200 mgO2/l and 4750 mgO2/l, respectively). The lithification process was divided into two stages. The first stage was to reduce the organic component in the filtrate using a coagulant, aluminum sulfate; the second stage was slag hydration. The optimum ratio of lithificate components in terms of mixture solidification rate was established at 1:0.03:1.25 (leachate, coagulant, blast furnace slag). The obtained material was analyzed for the solubility and content of various forms of metal. It is established that at infiltration of atmospheric precipitations through lithificate only 3 % of material will be washed out; concentrations of gross and mobile forms of heavy metals do not exceed the maximum permissible, except for the gross content of arsenic, mobile, and water-soluble forms of which were not found. The values of chemical (687 mgO2/l) and biological (173 mgO2/l) oxygen demand in the aqueous extract from lithificate decreased more than 25 times in comparison with the initial filtrate. According to the results of toxicological studies, lithificate was assigned an IV class of waste hazard, which confirms the possibility of its use as bulk material at landfills.