Cells (Jul 2021)
Spinal Cord Injury Significantly Alters the Properties of Reticulospinal Neurons: I. Biophysical Properties, Firing Patterns, Excitability, and Synaptic Inputs
Abstract
Following spinal cord injury (SCI) for larval lampreys, descending axons of reticulospinal (RS) neurons regenerate, and locomotor function gradually recovers. In the present study, the electrophysiological properties of uninjured (left)-injured (right) pairs of large, identified RS neurons were compared following rostral, right spinal cord hemi-transections (HTs). First, changes in firing patterns of injured RS neurons began in as little as 2–3 days following injury, these changes were maximal at ~2–3 weeks (wks), and by 12–16 wks normal firing patterns were restored for the majority of neurons. Second, at ~2–3 wks following spinal cord HTs, injured RS neurons displayed several significant changes in properties compared to uninjured neurons: (a) more hyperpolarized VREST; (b) longer membrane time constant and larger membrane capacitance; (c) increased voltage and current thresholds for action potentials (APs); (d) larger amplitudes and durations for APs; (e) higher slope for the repolarizing phase of APs; (f) virtual absence of some afterpotential components, including the slow afterhyperpolarization (sAHP); (g) altered, injury-type firing patterns; and (h) reduced average and peak firing (spiking) frequencies during applied depolarizing currents. These altered properties, referred to as the “injury phenotype”, reduced excitability and spiking frequencies of injured RS neurons compared to uninjured neurons. Third, artificially injecting a current to add a sAHP waveform following APs for injured neurons or removing the sAHP following APs for uninjured neurons did not convert these neurons to normal firing patterns or injury-type firing patterns, respectively. Fourth, trigeminal sensory-evoked synaptic responses recorded from uninjured and injured pairs of RS neurons were not significantly different. Following SCI, injured lamprey RS neurons displayed several dramatic changes in their biophysical properties that are expected to reduce calcium influx and provide supportive intracellular conditions for axonal regeneration.
Keywords