Atmosphere (Nov 2022)

Health Impacts of Surface Ozone in Outdoor and Indoor Environments of Hattar Industrial Units, KPK, Pakistan

  • Suneela Jadoon,
  • Shamyla Nawazish,
  • Zahid Majeed,
  • Ayesha Baig,
  • Syed Majid Bukhari,
  • Abu ul Hassan Faiz,
  • Abdulnoor A. J. Ghanim,
  • Muhammad Irfan,
  • Saifur Rahman,
  • Farid Ullah

DOI
https://doi.org/10.3390/atmos13122002
Journal volume & issue
Vol. 13, no. 12
p. 2002

Abstract

Read online

This research was carried out to analyze variations in indoor and outdoor ozone concentrations and their health impact on local communities of megacities in Pakistan. For indoor ozone measurements, industrial units of an economic zone, Hattar Industrial Estate, Haripur, KPK, Pakistan, were selected. For outdoor ozone measurements, maximum and minimum peaks from different selected stations of three megacities (Islamabad, Abbottabad, and Haripur Hattar) in Pakistan were analyzed for paired comparisons. The tropospheric ozone levels were measured with the help of a portable SKY 2000-WH-O3 meter from December 2018 to November 2019. According to the findings of this investigation, the indoor ozone concentrations at Hattar Industrial Estate exceeded the permissible limit devised by the WHO. The highest concentration (0.37 ppm) was recorded in the month of May in the food industry, while the lowest concentration (0.00 ppm) was recorded in the cooling area of the steel industry in the month of December. For outdoor ozone concentrations, the maximum concentration (0.23 ppm) was detected in Islamabad in the month of March 2019, whereas the rest of year showed comparatively lower concentrations. In Haripur, the maximum concentration (0.22 ppm) was detected in the month of February 2019 and a minimum concentration (0.11 ppm) was found in the month of November 2019. In Abbottabad, the maximum concentration (0.21 ppm) was detected in the month of March 2019 and the minimum concentration was 0.082 ppm. Increasing tropospheric ozone levels might be harmful for local communities and industrial laborers in the winter season because of the foggy weather. In the Abbottabad and Hattar regions, since COVID infection is indirectly related to low temperature and high emission of gases may compromise the respiratory systems of humans. The results of the present study were shared with industrialists to set precautions for ambient air quality and support the adoption of low emission techniques in industries for the safety of labour and nearby residents.

Keywords