Sensors (Jun 2018)

Electrical and Thermal Properties of Heater-Sensor Microsystems Patterned in TCO Films for Wide-Range Temperature Applications from 15 K to 350 K

  • Ryszard Pawlak,
  • Marcin Lebioda

DOI
https://doi.org/10.3390/s18061831
Journal volume & issue
Vol. 18, no. 6
p. 1831

Abstract

Read online

This paper presents an analysis of the electrical and thermal properties of miniature transparent heaters for use in a wide range of temperature applications, from 15 K to 350 K. The heater structures were produced in transparent conducting oxide (TCO) layers: indium tin oxide (ITO) and ITO/Ag/ITO on polymer substrates-polyethylene naphthalate (PEN) and polyethylene terephthalate (PET), by direct laser patterning. Thermo-resistors for temperature measurement were created in the same process, with geometry corresponding to the shape of the heating path. The thermo-resistors integrated with the heating structure allowed easy control of the thermal state of the heaters. Laser patterning provided high precision and repeatability in terms of the geometry and electrical properties of the heater-sensor structures. Measurements at temperatures from 15 K to above room temperature (350 K) confirmed the excellent dynamics of the heating and cooling processes, due to current flow. The largest value for surface heating power was over 3 W/cm2. A heater-sensor structure equipped with a small capacity chamber was successfully applied for controlled heating of small volumes of different liquids. Such structures have potential for use in research and measurements, where for various reasons controlled and accurate heating of small volumes of liquids is required.

Keywords