Symmetry (Jun 2021)
Deep Deterministic Policy Gradient Algorithm Based on Convolutional Block Attention for Autonomous Driving
Abstract
The research on autonomous driving based on deep reinforcement learning algorithms is a research hotspot. Traditional autonomous driving requires human involvement, and the autonomous driving algorithms based on supervised learning must be trained in advance using human experience. To deal with autonomous driving problems, this paper proposes an improved end-to-end deep deterministic policy gradient (DDPG) algorithm based on the convolutional block attention mechanism, and it is called multi-input attention prioritized deep deterministic policy gradient algorithm (MAPDDPG). Both the actor network and the critic network of the model have the same structure with symmetry. Meanwhile, the attention mechanism is introduced to help the vehicles focus on useful environmental information. The experiments are conducted in the open racing car simulator (TORCS)and the results of five experiment runs on the test tracks are averaged to obtain the final result. Compared with the state-of-the-art algorithm, the maximum reward increases from 62,207 to 116,347, and the average speed increases from 135 km/h to 193 km/h, while the number of success episodes to complete a circle increases from 96 to 147. Also, the variance of the distance from the vehicle to the center of the road is compared, and the result indicates that the variance of the DDPG is 0.6 m while that of the MAPDDPG is only 0.2 m. The above results indicate that the proposed MAPDDPG achieves excellent performance.
Keywords