Scientific Reports (May 2024)

Investigation of rank order centroid method for optimal generation control

  • T. Varshney,
  • A. V. Waghmare,
  • V. P. Singh,
  • M. Ramu,
  • N. Patnana,
  • V. P. Meena,
  • Ahmad Taher Azar,
  • Ibrahim A. Hameed

DOI
https://doi.org/10.1038/s41598-024-61945-z
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 21

Abstract

Read online

Abstract Multi-criteria decision-making (MCDM) presents a significant challenge in decision-making processes, aiming to ascertain optimal choice by considering multiple criteria. This paper proposes rank order centroid (ROC) method, MCDM technique, to determine weights for sub-objective functions, specifically, addressing issue of automatic generation control (AGC) within two area interconnected power system (TAIPS). The sub-objective functions include integral time absolute errors (ITAE) for frequency deviations and control errors in both areas, along with ITAE of fluctuation in tie-line power. These are integrated into an overall objective function, with ROC method systematically assigning weights to each sub-objective. Subsequently, a PID controller is designed based on this objective function. To further optimize objective function, Jaya optimization algorithm (JOA) is implemented, alongside other optimization algorithms such as teacher–learner based optimization algorithm (TLBOA), Luus–Jaakola algorithm (LJA), Nelder–Mead simplex algorithm (NMSA), elephant herding optimization algorithm (EHOA), and differential evolution algorithm (DEA). Six distinct case analyses are conducted to evaluate controller’s performance under various load conditions, plotting data to illustrate responses to frequency and tie-line exchange fluctuations. Additionally, statistical analysis is performed to provide further insights into efficacy of JOA-based PID controller. Furthermore, to prove the efficacy of JOA-based proposed controller through non-parametric test, Friedman rank test is utilized.

Keywords