Cerebrospinal Fluid Research (Dec 2007)
Expression of junctional proteins in choroid plexus epithelial cell lines: a comparative study
Abstract
Abstract Background There is an increasing interest in using choroid plexus (CP) epithelial cell lines to study the properties of the blood-cerebrospinal fluid barrier (BCSFB). Currently, there are three major CP-derived cell lines available. Z310 and TR-CSFB3, two immortalized cell lines carrying the simian virus 40 large T-antigen gene, were derived from rat CP epithelium, whereas the CPC-2 cell line was derived from human CP carcinoma. Although these cell lines have previously been used in various functional studies, the expression of adherens junction (AJ) and tight junction (TJ) proteins in these epithelial cells has not been systematically studied. Accordingly, in the present study, we sought to characterize the expression of these junctional proteins in these three cell lines. Methods The cells were grown in six-well cell culture plates. Reverse-transcriptase polymerase chain reaction, Western blotting, and immunocytochemistry were used to characterize the expression of AJ and TJ proteins in the CP cell lines. Results Z310 and TR-CSFB3 cells expressed a TJ protein, occludin, and its cytosolic binding partner, zonula occludens 1, as well as an AJ protein, E-cadherin, and β-catenin, a cytoplasmic protein that interacts with E-cadherin. However, the expression of occludin and E-cadherin in TR-CSFB3 cells at both the mRNA and protein level was weaker than that found in Z301 cells. The immunocytochemical analysis also demonstrated that the staining pattern for these junctional proteins in TR-CSFB3 cells was discontinuous and the staining intensity was weaker than that observed in Z310 cells. The message for claudin 1 and claudin 2 was expressed at low levels in TR-CSFB3 cells and these cells were weakly immunopositive for claudin 1. In comparison, the message for these TJ proteins could not be detected in Z310 cells. CPC-2 cells expressed occludin, which was localized to areas of cell-cell contact, but the staining pattern for this TJ protein was found to be variable and irregular. Although CPC-2 cells expressed mRNA for claudin 1, claudin 2, and claudin 11, only claudin 1 was expressed at the protein level and it was localized to the nuclei rather than to areas of cell-cell contact. An AJ protein, E-cadherin, was also found to be mislocalized in CPC-2 cells, even though its cytosolic binding partner, β-catenin, was restricted to areas of cell-cell contact, as in normal CP. Conclusion The three CP cell lines analyzed in this study vary considerably with regard to the expression of AJ and TJ proteins, which is likely reflected by different barrier properties of these in vitro models of BCSFB.