E3S Web of Conferences (Jan 2021)

Numerical analysis of forced convection heat transfer in a rectangular micro-channel totally filled with Ag/ water nano fluid in slip flow regime using the lattice Boltzmann method

  • Ben Ltaifa Kaouther,
  • D’Orazio Annunziata,
  • Karimipour Arash,
  • Dhahri Hacen

DOI
https://doi.org/10.1051/e3sconf/202132104008
Journal volume & issue
Vol. 321
p. 04008

Abstract

Read online

Numerical simulation reported on heat transfer and fluid flow in a two-dimensional rectangular micro channel totally filled with Ag/water. The first –order slip/jump boundary conditions were uniformly imposed to the up and bottom walls. The governing conservation equations are translated in dimensionless form using the thermal Single Relaxation Time (T-SRT) modified Lattice Boltzmann Method (LBM) with double distribution functions (DDFs). The viscous dissipations effects are adopted into the energy equation. Effects of nanoparticle volume fraction φ, slip coefficient, B, on the flow of Nano fluid and heat transfer were studied. The results were interpreter in terms of slip velocity; temperature jump and Nusselt number. Based on the results found, it can be concluded that decreasing the values of slip coefficient enhances the convective heat transfer coefficient and consequently the Nusselt number (Nu) but increases the slip velocity at the wall and temperature jump values.