Sensors (Sep 2017)

A Novel Energy-Efficient Approach for Human Activity Recognition

  • Lingxiang Zheng,
  • Dihong Wu,
  • Xiaoyang Ruan,
  • Shaolin Weng,
  • Ao Peng,
  • Biyu Tang,
  • Hai Lu,
  • Haibin Shi,
  • Huiru Zheng

DOI
https://doi.org/10.3390/s17092064
Journal volume & issue
Vol. 17, no. 9
p. 2064

Abstract

Read online

In this paper, we propose a novel energy-efficient approach for mobile activity recognition system (ARS) to detect human activities. The proposed energy-efficient ARS, using low sampling rates, can achieve high recognition accuracy and low energy consumption. A novel classifier that integrates hierarchical support vector machine and context-based classification (HSVMCC) is presented to achieve a high accuracy of activity recognition when the sampling rate is less than the activity frequency, i.e., the Nyquist sampling theorem is not satisfied. We tested the proposed energy-efficient approach with the data collected from 20 volunteers (14 males and six females) and the average recognition accuracy of around 96.0% was achieved. Results show that using a low sampling rate of 1Hz can save 17.3% and 59.6% of energy compared with the sampling rates of 5 Hz and 50 Hz. The proposed low sampling rate approach can greatly reduce the power consumption while maintaining high activity recognition accuracy. The composition of power consumption in online ARS is also investigated in this paper.

Keywords