Metals (Jan 2018)

Mechanical Alloying and Hot Pressing of Ti-Zr-Si-B Powder Mixtures

  • Isadora Rossi Bertoli,
  • Lucas Moreira Ferreira,
  • Bruno Xavier de Freitas,
  • Carlos Angelo Nunes,
  • Alfeu Saraiva Ramos,
  • Marcello Filgueira,
  • Claudinei dos Santos,
  • Erika Coaglia Trindade Ramos

DOI
https://doi.org/10.3390/met8020082
Journal volume & issue
Vol. 8, no. 2
p. 82

Abstract

Read online

This work discusses microstructure evolution during ball milling and hot pressing of Ti-xZr-10Si-5B (x = 2 and 5 at. %) and Ti-xZr-20Si-10B (x = 5, 7, 10, 15 and 20 at. %) powder mixtures. Mechanical alloying was carried out in a ball mill using stainless steel balls and vials, 300 rpm and a ball-to-powder ratio of 10:1. Powders milled for 600 min were then hot-pressed (25 MPa) under vacuum at 1100 °C for 60 min. As-milled and hot-pressed samples were evaluated by X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and energy dispersive spectrometry (EDS). Peaks of Si and Zr disappeared in powders milled for 60 and 180 min, respectively, while the lattice parameters and cell volume of α-Ti were varied during ball milling up to 300 min indicating that supersaturated solid solutions were achieved. Ti6Si2B dissolving up to 10 at. % Zr was found in microstructure of hot-pressed Ti-xZr-10Si-5B (x = 2 and 5 at. %) and Ti-xZr-20Si-10B (x = 2, 5, 7 and 10 at. %) alloys. The amount of TiB and Ti5Si3 was preferentially increased whereas the Ti3Si formed in microstructure of the hot-pressed Ti-15Zr-20Si-5B and Ti-20Zr-20Si-10B alloys.

Keywords