Energies (Nov 2021)

Thermal Performance of a Capacitive Comb-Drive MEMS Accelerometer: Measurements vs. Simulation

  • Mariusz Jankowski,
  • Piotr Zając,
  • Piotr Amrozik,
  • Michał Szermer,
  • Cezary Maj,
  • Grzegorz Jabłoński,
  • Jacek Nazdrowicz

DOI
https://doi.org/10.3390/en14227462
Journal volume & issue
Vol. 14, no. 22
p. 7462

Abstract

Read online

In this work, we analysed the difference between the measurement and simulation results of thermal drift of a custom designed capacitive MEMS accelerometer. It was manufactured in X-FAB XMB10 technology together with a dedicated readout circuit in X-FAB XP018 technology. It turned out that the temperature sensitivity of the sensor’s output is nonlinear and particularly strong in the negative Celsius temperature range. It was found that the temperature drift is mainly caused by the MEMS sensor and the influence of the readout circuit is minimal. Moreover, the measurements showed that this temperature dependence is the same regardless of applied acceleration. Simulation of the accelerometer’s model allowed us to estimate the contribution of post-manufacturing mismatch on the thermal drift; for our sensor, the mismatch-induced drift accounted for about 6% of total thermal drift. It is argued that the remaining 94% of the drift could be a result of the presence of residual stress in the structure after fabrication.

Keywords