Indian Pacing and Electrophysiology Journal (Jul 2006)
Atrial Fibrillation and Pacing Algorithms
Abstract
Pacing prevention algorithms have been introduced in order to maximize the benefits of atrial pacing in atrial fibrillation prevention. It has been demonstrated that algorithms actually keep overdrive atrial pacing, reduce atrial premature contractions, and prevent short-long atrial cycle phenomenon, with good patient tolerance. However, clinical studies showed inconsistent benefits on clinical endpoints such as atrial fibrillation burden. Factors which may be responsible for neutral results include an already high atrial pacing percentage in conventional DDDR, non-optimal atrial pacing site and deleterious effects of high percentages of apical ventricular pacing. Atrial antitachycardia pacing (ATP) therapies are effective in treating spontaneous atrial tachyarrhythmias, mainly when delivered early after arrhythmia onset and/or on slower tachycardias. Effective ATP therapies may reduce atrial fibrillation burden, but conflicting evidence does exist as regards this issue, probably because current clinical studies may be underpowered to detect such an efficacy. Wide application of atrial ATP may reduce the need for hospitalizations and electrical cardioversions and favorably impact on quality of life. Consistent monitoring of atrial and ventricular rhythm as well as that of ATP effectiveness may be extremely useful for optimizing device programming and pharmacological therapy.