Nuclear Engineering and Technology (Sep 2024)
Optimization method for offsite consequence analysis by efficient plume segmentation
Abstract
The speed of offsite consequence analysis is highly important due to the extensive calculations required to handle all the scenarios for a single-unit or multi-unit Level 3 PSA (probabilistic safety assessment). To perform an offsite consequence analysis as part of Level 3 PSA, various input parameters are considered, amongst which certain parameters, such as plume segments, spatial grids, and particle size distributions, have flexible input formats. This study describes the development of an effective optimization method to reduce the analysis time as much as possible while maintaining the accuracy of the offsite consequence analysis results. The effect of plume segmentation on offsite consequence analysis was investigated by observing deviations in analysis results and changes in the required analysis times following changes in plume release. Then a plume segmentation optimization method based on the cumulative release fraction slope was developed to intensively analyze the sections with rapid release and to simplify the analysis for the sections with nonsignificant release. As a result of applying this method, the analysis time was reduced by about 54.5 % compared to the base case, while the resulting health effects showed very small deviations of 0.03 % and 1.77 % for early fatality risk and cancer fatality risk, respectively.