Respiratory Research (Dec 2021)

Role of Secretoglobin + (club cell) NFκB/RelA-TGFβ signaling in aero-allergen-induced epithelial plasticity and subepithelial myofibroblast transdifferentiation

  • Melissa E. Skibba,
  • Xiaofang Xu,
  • Kurt Weiss,
  • Jan Huisken,
  • Allan R. Brasier

DOI
https://doi.org/10.1186/s12931-021-01910-w
Journal volume & issue
Vol. 22, no. 1
pp. 1 – 18

Abstract

Read online

Abstract Repetitive aeroallergen exposure is linked to sensitization and airway remodeling through incompletely understood mechanisms. In this study, we examine the dynamic mucosal response to cat dander extract (CDE), a ubiquitous aero-allergen linked to remodeling, sensitization and asthma. We find that daily exposure of CDE in naïve C57BL/6 mice activates innate neutrophilic inflammation followed by transition to a lymphocytic response associated with waves of mucosal transforming growth factor (TGF) isoform expression. In parallel, enhanced bronchiolar Smad3 expression and accumulation of phospho-SMAD3 was observed, indicating paracrine activation of canonical TGFβR signaling. CDE exposure similarly triggered epithelial cell plasticity, associated with expression of mesenchymal regulatory factors (Snai1 and Zeb1), reduction of epithelial markers (Cdh1) and activation of the NFκB/RelA transcriptional activator. To determine whether NFκB functionally mediates CDE-induced growth factor response, mice were stimulated with CDE in the absence or presence of a selective IKK inhibitor. IKK inhibition substantially reduced the level of CDE-induced TGFβ1 expression, pSMAD3 accumulation, Snai1 and Zeb1 expression. Activation of epithelial plasticity was demonstrated by flow cytometry in whole lung homogenates, where CDE induces accumulation of SMA+Epcam+ population. Club cells are important sources of cytokine and growth factor production. To determine whether Club cell innate signaling through NFκB/RelA mediated CDE induced TGFβ signaling, we depleted RelA in Secretoglobin (Scgb1a1)-expressing bronchiolar cells. Immunofluorescence-optical clearing light sheet microscopy showed a punctate distribution of Scgb1a1 progenitors throughout the small airway. We found that RelA depletion in Secretoglobin+ cells results in inhibition of the mucosal TGFβ response, blockade of EMT and reduced subepithelial myofibroblast expansion. We conclude that the Secretoglobin—derived bronchiolar cell is central to coordinating the innate response required for mucosal TGFβ1 response, EMT and myofibroblast expansion. These data have important mechanistic implications for how aero-allergens trigger mucosal injury response and remodeling in the small airway.

Keywords