Atmospheric Measurement Techniques (Jul 2024)

Toward on-demand measurements of greenhouse gas emissions using an uncrewed aircraft AirCore system

  • Z. Zhu,
  • J. González-Rocha,
  • Y. Ding,
  • I. Frausto-Vicencio,
  • S. Heerah,
  • A. Venkatram,
  • M. Dubey,
  • D. Collins,
  • F. M. Hopkins

DOI
https://doi.org/10.5194/amt-17-3883-2024
Journal volume & issue
Vol. 17
pp. 3883 – 3895

Abstract

Read online

This paper evaluates the performance of a multirotor uncrewed aircraft and AirCore system (UAAS) for measuring vertical profiles of wind velocity (speed and direction) and the mole fractions of methane (CH4) and carbon dioxide (CO2), and it presents a use case that combines UAAS measurements and dispersion modeling to quantify CH4 emissions from a dairy farm. To evaluate the atmospheric sensing performance of the UAAS, four field deployments were performed at three locations in the San Joaquin Valley of California where CH4 hotspots were observed downwind of dairy farms. A comparison of the observations collected on board the UAAS and an 11 m meteorological tower show that the UAAS can measure wind velocity trends with a root mean squared error varying between 0.4 and 1.1 m s−1 when the wind magnitude is less than 3.5 m s−1. Findings from UAAS flight deployments and a calibration experiment also show that the UAAS can reliably resolve temporal variations in the mole fractions of CH4 and CO2 occurring over periods of 10 s or longer. Results from the UAAS and dispersion modeling use case further demonstrate that UAASs have great potential as low-cost tools for detecting and quantifying CH4 emissions in near real time.