PLoS ONE (Jan 2012)

Magnolol reduces glutamate-induced neuronal excitotoxicity and protects against permanent focal cerebral ischemia up to 4 hours.

  • Wei-Ting Lee,
  • Miao-Hui Lin,
  • E-Jian Lee,
  • Yu-Chang Hung,
  • Shih-Huang Tai,
  • Hung-Yi Chen,
  • Tsung-Ying Chen,
  • Tian-Shung Wu

DOI
https://doi.org/10.1371/journal.pone.0039952
Journal volume & issue
Vol. 7, no. 7
p. e39952

Abstract

Read online

Neuroprotective efficacy of magnolol, 5,5'-dially-2,2'-dihydroxydiphenyl, was investigated in a model of stroke and cultured neurons exposed to glutamate-induced excitotoxicity. Rats were subjected to permanent middle cerebral artery occlusion (pMCAO). Magnolol or vehicle was administered intraperitoneally, at 1 hr pre-insult or 1-6 hrs post-insult. Brain infarction was measured upon sacrifice. Relative to controls, animals pre-treated with magnolol (50-200 mg/kg) had significant infarct volume reductions by 30.9-37.8% and improved neurobehavioral outcomes (P<0.05, respectively). Delayed treatment with magnolol (100 mg/kg) also protected against ischemic brain damage and improved neurobehavioral scores, even when administered up to 4 hrs post-insult (P<0.05, respectively). Additionally, magnolol (0.1 µM) effectively attenuated the rises of intracellular Ca(2+) levels, [Ca(2+)](i), in cultured neurons exposed to glutamate. Consequently, magnolol (0.1-1 µM) significantly attenuated glutamate-induced cytotoxicity and cell swelling (P<0.05). Thus, magnolol offers neuroprotection against permanent focal cerebral ischemia with a therapeutic window of 4 hrs. This neuroprotection may be, partly, mediated by its ability to limit the glutamate-induced excitotoxicity.