IEEE Open Journal of Circuits and Systems (Jan 2023)

An Inductorless Optical Receiver Front-End Employing a High Gain-BW Product Differential Transimpedance Amplifier in 16-nm FinFET Process

  • Milad Haghi Kashani,
  • Hossein Shakiba,
  • Ali Sheikholeslami

DOI
https://doi.org/10.1109/OJCAS.2023.3236567
Journal volume & issue
Vol. 4
pp. 36 – 49

Abstract

Read online

In this paper, a fully-differential transimpedance amplifier (TIA) providing a high gain-BW product (GBP) is introduced. In the proposed architecture, a cascode cross-coupled structure is employed to double the effective transconductance of the cascode devices, improving the BW of the TIA. Moreover, a differential architecture is implemented using an RC high-pass filter along with a buffer stage requiring smaller capacitance and resistance. Furthermore, a single-ended negative capacitance generation (NCG) circuit is employed at the input of the TIA to partially compensate for the input parasitic capacitances. A TIA including the proposed techniques, designed and laid out in a 16-nm FinFET process, demonstrates 57% and 79% better figure-of-merit compared to cascode and conventional TIAs designed along with the proposed TIA for a fair comparison, respectively. Post-layout simulations in companion with statistical analysis are employed to verify the effectiveness of the proposed architecture. From simulation results, the optical receiver achieves a peak transimpedance gain of 58.5 dB $\Omega $ , a BW of 14.8 GHz, an input-referred noise of 33.6 pA/ $\surd $ Hz, and an eye-opening of 30 mV at a data-rate of 56 Gbps PAM4 and at a bit-error-rate (BER) of 1E-6. The whole circuit consumes 49 mW and occupies an active area of 0.0076 mm 2.

Keywords