Energies (Jan 2013)
Optimal Allocation of Wind Turbines by Considering Transmission Security Constraints and Power System Stability
Abstract
A novel optimization methodology consisting of finding the near optimal location of wind turbines (WTs) on a planned transmission network in a secure and cost-effective way is presented on this paper. While minimizing the investment costs of WTs, the algorithm allocates the turbines so that a desired wind power energy-penetration level is reached. The optimization considers both transmission security and power system stability constraints. The results of the optimization provide regulators with a support instrument to give proper signals to WT investors, in order to achieve secure and cost effective wind power network integration. The proposal is especially aimed at countries in the initial stage of wind power development, where the WT network integration process can still be influenced by policy-makers. The proposed methodology is validated with a real power system. Obtained results are compared with those generated from a business-as-usual (BAU) scenario, in which the WT network allocation is made according to existing WT projects. The proposed WT network allocation scheme not only reduces the total investment costs associated with a determined wind power energy target, but also improves power system stability.
Keywords