Fractal and Fractional (Jan 2019)

Study of Fractal Dimensions of Microcrystalline Cellulose Obtained by the Spray-Drying Method

  • Michael Ioelovich

DOI
https://doi.org/10.3390/fractalfract3010003
Journal volume & issue
Vol. 3, no. 1
p. 3

Abstract

Read online

In this research, the fractal structure of beads of different sizes obtained by the spray-drying of aqueous dispersions of microcrystalline cellulose (MCC) was studied. These beads were formed as a result of the aggregation of rod-shaped cellulose nanocrystalline particles (CNP). It was found that increasing the average radius (R) of the formed MCC beads resulted in increased specific pore volume (P) and reduced apparent density (ρ). The dependences of P and ρ on the scale factor (R/r) can be expressed by power-law equations: P = Po (R/r)E−Dp and ρ = d (R/r)Dd−E, where the fractal dimensions Dp = 2.887 and Dd = 2.986 are close to the Euclidean dimension E = 3 for three-dimensional space; r = 3 nm is the radius of the cellulose nanocrystalline particles, Po = 0.03 cm3/g is the specific pore volume, and d = 1.585 g/cm3 is the true density (specific gravity) of the CNP, respectively. With the increase in the size of the formed MCC beads, the order in the packing of the beads was distorted, conforming to theory of the diffusion-limited aggregation process.

Keywords