Marine Drugs (Sep 2024)

Sphaerococcenol A Derivatives: Design, Synthesis, and Cytotoxicity

  • Dídia Sousa,
  • Milene A. G. Fortunato,
  • Joana Silva,
  • Mónica Pingo,
  • Alice Martins,
  • Carlos A. M. Afonso,
  • Rui Pedrosa,
  • Filipa Siopa,
  • Celso Alves

DOI
https://doi.org/10.3390/md22090408
Journal volume & issue
Vol. 22, no. 9
p. 408

Abstract

Read online

Sphaerococcenol A is a cytotoxic bromoditerpene biosynthesized by the red alga Sphaerococcus coronopifolius. A series of its analogues (1–6) was designed and semi-synthesized using thiol-Michael additions and enone reduction, and the structures of these analogues were characterized by spectroscopic methods. Cytotoxic analyses (1–100 µM; 24 h) were accomplished on A549, DU-145, and MCF-7 cells. The six novel sphaerococcenol A analogues displayed an IC50 range between 14.31 and 70.11 µM on A549, DU-145, and MCF-7 malignant cells. Compound 1, resulting from the chemical addition of 4-methoxybenzenethiol, exhibited the smallest IC50 values on the A549 (18.70 µM) and DU-145 (15.82 µM) cell lines, and compound 3, resulting from the chemical addition of propanethiol, exhibited the smallest IC50 value (14.31 µM) on MCF-7 cells. The highest IC50 values were exhibited by compound 4, suggesting that the chemical addition of benzylthiol led to a loss of cytotoxic activity. The remaining chemical modifications were not able to potentiate the cytotoxicity of the original compounds. Regarding A549 cell viability, analogue 1 exhibited a marked effect on mitochondrial function, which was accompanied by an increase in ROS levels, Caspase-3 activation, and DNA fragmentation and condensation. This study opens new avenues for research by exploring sphaerococcenol A as a scaffold for the synthesis of novel bioactive molecules.

Keywords