Data in Brief (Dec 2021)
Dataset of human EDEM2 melanoma cells proteomics, affinity proteomics and deglycoproteomics
Abstract
EDEM2 (Endoplasmic reticulum Degradation-Enhancing alpha-Mannosidase-like protein 2) is one of the key-proteins suggested to be involved in the selection and degradation of misfolded proteins from the endoplasmic reticulum. The datasets discussed in this article are related to experiments covering affinity proteomics, label-free quantitative proteomics, deglycoproteomics and SILAC (Stable Isotope Labeling by Amino Acids in Cell Culture) proteomics data of A375 melanoma cells with modified expression of EDEM2. Our first aim was to affinity-enrich EDEM2 alongside its potential interaction partners and analyse the obtained samples by nanoLC-MS/MS to identify novel EDEM2 associated proteins. The dataset was substantiated by SDF (Sucrose Density Fractionation)-nanoLC-MS/MS experiments, in an integrated workflow to validate EDEM2 identified partners and corroborate these with previous data. Our second aim was to delineate novel EDEM2 substrate candidates using a two-step strategy. The first one refers to the deglycoproteomics dataset, which covers nanoLC-MS/MS analysis of Concanavalin A enriched glycopeptides released by endoglycosidase digestion from A375 melanoma cell lysates. This allowed us to map the fraction of glycoproteins with non-matured N-glycans from A375 melanoma cells and find or validate N-glycosylation sites of proteins from the secretory pathway. The same dataset was also used to define glycoproteins altered by the down-regulation of endogenous EDEM2, which should contain its candidate-substrates. In a second step we delineate the degradation kinetics of some of these proteins using a pulse SILAC strategy (pSILAC) thus complementing our initial findings with a fourth dataset. Beside nanoLC-MS/MS analysis our findings were also validated by various biochemical experiments. All the data described are associated with a research article published in Molecular and Cellular Proteomics [1].