Acta Montanistica Slovaca (Mar 2002)
The utilization of mechanochemistry in the extractive metallurgy and at the nanocrystalline materials preparation
Abstract
The possibility of the application of mechanochemistry in the extractive metallurgy and the nanocrystalline materials preparation is studied. The aim of the experiments is the chloride leaching of a complex sulphidic CuPbZn concentrate (Hodrua-Hámre), the modification of properties of CaCO3 (Yauli, Peru) for zinc sorption from model solutions and the mechanochemical reduction of copper sulphide by elemental iron.The chloride leaching of mechanically activated complex sulphidic CuPbZn concentrate is a selective process. While the recoveries of copper, lead and zinc are 65-85 %, the recoveries of silver and gold are less than 7 % and 2 %, respectively.The positive influence of CaCO3 mechanical activation for zinc sorption from ZnSO4 solution was observed. While only 58 % of zinc sorption was determined after 30 minutes for a non-activated sample, 98 % of zinc sorption was determined after 3 minutes sorption for the sample mechanically activated for 15 minutes.By the mechanochemical reduction of copper sulphide with iron, nanocrystalline copper and iron sulphide are formed. This reaction is an example of the new solid state technology, where chemical processes in the gaseous and liquid states are excluded.The results can serve as a contribution to the optimization of copper, lead and zinc extraction from complex sulphidic concentrates, the increase of non-ferrous metals sorption efficiency on mineral sorbents as well as to the nanocrystalline copper preparation.The application of mechanical activation has grown in the laboratory research. The Institute of Geotechnics of SAS has also achieved significant theoretical results in study of mechanical activation of sulphides and their reactivity in the different solid-phase reactions with the effect on industrial applications. The Institute has developed the technology of mechanochemical leaching (process MELT) which was successfully tested in a pilot plant unit.