Crystals (Feb 2022)

Biogenic Synthesis of AgNPs Using Aqueous Bark Extract of <i>Aesculus indica</i> for Antioxidant and Antimicrobial Applications

  • Muhammad Riaz,
  • Amrina Suleman,
  • Pervaiz Ahmad,
  • Mayeen Uddin Khandaker,
  • Amal Alqahtani,
  • David A. Bradley,
  • Muhammad Qayyum Khan

DOI
https://doi.org/10.3390/cryst12020252
Journal volume & issue
Vol. 12, no. 2
p. 252

Abstract

Read online

Nanotechnology has received a lot of attention from the scientific community because of the greater surface-to-volume ratio of nanomaterials, which phenomenally increases their efficacy in practical applications. Among the various synthesis techniques, the biogenic or green synthesis of nanomaterials shows advantages over other techniques such as physical, chemical, etc. This study reports the biogenic synthesis of silver nanoparticles (AgNPs) using aqueous bark extract of Aesculus indica. The as-synthesized NPs were characterized by UV–visible, FT-IR, XRD, and SEM, and then tested for their antioxidant and antimicrobial potency. We have identified phenols, flavonoids, tannins, saponins, and carbohydrates in the bark extract of A. indica. The extract-loaded-AgNPs showed the highest inhibition for Staphylococcus aureus (28.0 mm), Pseudomonas aeruginosa (17.66 mm), Escherichia coli (14.33 mm), Acetobacter serratia (14.00 mm), and Klebsiella pneumoniae (12.33 mm). The methanolic bark extract inhibited S. aureus (24.33 mm), P. aeruginosa (10.66 mm), E. coli (11.33 mm), A. serratia (9.66 mm), and K. pneumoniae (11.66 mm). Aqueous bark extract inhibited S. aureus (22.33 mm), P. aeruginosa (8.33 mm), E. coli (9.33 mm), A. serratiaa (8.33 mm), and K. pneumoniae (9.66 mm). Its aqueous extract showed the highest antioxidant potency; IC50 (0.175 µg/mL) followed by the methanolic extract; IC50 (0.210 µg/mL) and extract-loaded nanoparticles; IC50 (0.901 µg/mL). Our findings provide meaningful interest for antioxidant, anti-microbial applications of, and AgNPs synthesis by, aqueous bark extract of A. indica.

Keywords