Journal of Electrical and Computer Engineering (Jan 2019)

A Novel Improved Maximum Entropy Regularization Technique and Application to Identification of Dynamic Loads on the Coal Rock

  • Chunsheng Liu,
  • Chunping Ren

DOI
https://doi.org/10.1155/2019/9602954
Journal volume & issue
Vol. 2019

Abstract

Read online

A new signal processing algorithm was proposed to identify the dynamic load acting on the coal-rock structure. First, the identification model for dynamic load is established through the relationship between the uncertain load vector, and the assembly matrix of the responses was measured by the machinery dynamic system. Then, the entropy item of maximum entropy regularization (MER) is redesigned using the robust estimation method, and the elongated penalty function according to the ill-posedness characteristics of load identification, which was named as a novel improved maximum entropy regularization (IMER) technique, was proposed to process the dynamic load signals. Finally, the load identification problem is transformed into an unconstrained optimization problem and an improved Newton iteration algorithm was proposed to solve the objective function. The result of IMER technique is compared with MER technique, and it is found that IMER technique is available for analyzing the dynamic load signals due to higher signal-noise ratio, lower restoration time, and fewer iterative steps. Experiments were performed to investigate the effect on the performance of dynamic load signals identification by different regularization parameters and calculation parameters, pi, respectively. Experimental results show that the identified dynamic load signals are closed to the actual load signals using IMER technique combined with the proposed PSO-L regularization parameter selection method. Selecting optimal calculated parameters pi is helpful to overcome the ill-condition of dynamic load signals identification and to obtain the stable and approximate solutions of inverse problems in practical engineering. Meanwhile, the proposed IMER technique can also play a guiding role for the coal-rock interface identification.