e-Polymers (Jul 2021)

Catalase biosensor based on the PAni/cMWCNT support for peroxide sensing

  • Domínguez-Aragón Angélica,
  • Dominguez Rocio B.,
  • Peralta-Pérez María del Rosario,
  • Armando Zaragoza-Contreras Erasto

DOI
https://doi.org/10.1515/epoly-2021-0050
Journal volume & issue
Vol. 21, no. 1
pp. 476 – 490

Abstract

Read online

Polymeric-based composites can contribute to enhancing the detection, stability, and performance of enzymatic biosensors, due to their high structural stability, conductivity, and biocompatibility. This work presents the fabrication of a nanocomposite of polyaniline (PAni)/gold nanoparticles (AuNP)/carboxylated multiwalled carbon nanotubes (cMWCNT) as functional support for covalently linked catalase (CAT) enzyme. PAni was electropolymerized on a screen-printed carbon electrode (SPCE) and decorated with AuNP to improve charge transfer properties. CAT was bonded through amide formation using the carboxylic groups of cMWCNT, resulting in PAni/AuNP/cMWCNT/CAT biosensor. The structural and electroactive characteristics of the nanocomposite were studied by SEM, FT-IR, and cyclic voltammetry. The optimal performance was achieved after CAT immobilization over PAni/AuNP/cMWCNT/nanocomposite, showing improved analytical features such as a fast amperometric response of 1.28 s, a wide detection range from 0.01 to 6.8 mM, a correlation coefficient (R 2) of 0.9921, a low detection limit of 2.34 µM, and an average recovery rate of 99.6% when evaluated in milk samples. Additionally, the bioelectrode showed excellent selectivity and retained bioactivity after 30 days of storage. Such remarkable performance proved the synergistic effects of both the high surface area of the cMWCNT and AuNP and the inherent PAni electroactivity, yielding direct electron transfer from CAT.

Keywords