Metals (Mar 2024)
Effect of Deformation Degree on Microstructure and Properties of Ni-Based Alloy Forgings
Abstract
The primary objective of this paper is to investigate the influence of deformation degree on the microstructure and properties of a Ni-based superalloy. An upsetting experiment was conducted using a free-forging hammer to achieve a deformation degree ranging from 60% to 80%. The impact of the forging deformation degree on the hardness and high-temperature erosion performance was evaluated using the Rockwell hardness tester (HRC) and high-temperature erosion tester, respectively. The experimental results indicate that as the deformation degree increased, the hardness of the forged material progressively increased while the rate of high-temperature erosion gradually decreased. In order to comprehensively study the mechanism behind the variations in forging performance, optical microscopy (OM), scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM) were employed. The findings reveal that as the deformation degree increased, the presence of small-angle grain boundaries and an increase in grain boundary area contributed to enhanced hardness in the alloy forgings. Furthermore, it was discovered that grain boundaries with twin orientation promoted dynamic recrystallization during deformation, specifically through a discontinuous dynamic recrystallization mechanism. Additionally, the precipitated γ′ phase in the alloy exhibited particle sizes ranging from 40 to 100 nm. This particle size range resulted in a higher critical shear stress value and a more pronounced strengthening effect on the alloy.
Keywords