Applied Sciences (Jan 2022)

Sensitivity Analysis of Holdback Bar Release Load during Catapult-Assisted Takeoff of Carrier-Based Aircraft

  • Enze Zhu,
  • Zhipeng Zhang,
  • Hong Nie

DOI
https://doi.org/10.3390/app12020785
Journal volume & issue
Vol. 12, no. 2
p. 785

Abstract

Read online

The release load of holdback bar will affect the safety of catapult-assisted takeoff of carrier-based aircraft, and the accurate control of releasing the load will ensure success. The magnitude and the control accuracy of release load are important parameters which impact the takeoff performance, therefore unstable release load and insufficient release precision are the main factors affecting the takeoff safety. In this paper, mechanical models of the carrier-based aircraft in the catapult-assisted takeoff tensioning state and gliding state after release are established based on multi-body dynamics, contact mechanics and tribological theory, and the influence of the release load of the holdback bar on the catapult-assisted takeoff performance is analyzed. Furthermore, a kinetic model of the holdback bar device is established, and the kinetic characteristics of the release process of the holdback bar are studied. Based on the kinetic model and friction model of the holdback bar, the influencing factors of the sensitivity of the holdback bar release load are analyzed and the structural parameters are optimized. The results show that the released load decreases slowly with the increase of the contact surface angle of the holdback bar structure and increases rapidly when that angle reaches the critical value; besides, the release load increases slowly with the increase of the friction coefficient of the contact surface and increases faster when the critical friction coefficient is reached.

Keywords