Atmospheric Measurement Techniques (Aug 2024)
Shortwave Array Spectroradiometer-Hemispheric (SAS-He): design and evaluation
Abstract
A novel ground-based radiometer, referred to as the Shortwave Array Spectroradiometer-Hemispheric (SAS-He), is introduced. This radiometer uses the shadow-band technique to report total irradiance and its direct and diffuse components frequently (every 30 s) with continuous spectral coverage (350–1700 nm) and moderate spectral (∼ 2.5 nm ultraviolet–visible and ∼ 6 nm shortwave-infrared) resolution. The SAS-He's performance is evaluated using integrated datasets collected over coastal regions during three field campaigns supported by the US Department of Energy's Atmospheric Radiation Measurement (ARM) program, namely the (1) Two-Column Aerosol Project (TCAP; Cape Cod, Massachusetts), (2) Tracking Aerosol Convection Interactions Experiment (TRACER; in and around Houston, Texas), and (3) Eastern Pacific Cloud Aerosol Precipitation Experiment (EPCAPE; La Jolla, California). We compare (i) aerosol optical depth (AOD) and total optical depth (TOD) derived from the direct irradiance, as well as (ii) the diffuse irradiance and direct-to-diffuse ratio (DDR) calculated from two components of the total irradiance. As part of the evaluation, both AOD and TOD derived from the SAS-He direct irradiance are compared to those provided by a collocated Cimel sunphotometer (CSPHOT) at five (380, 440, 500, 675, 870 nm) and two (1020, 1640 nm) wavelengths, respectively. Additionally, the SAS-He diffuse irradiance and DDR are contrasted with their counterparts offered by a collocated multifilter rotating shadowband radiometer (MFRSR) at six (415, 500, 615, 675, 870, 1625 nm) wavelengths. Overall, reasonable agreement is demonstrated between the compared products despite the challenging observational conditions associated with varying aerosol loadings and diverse types of aerosols and clouds. For example, the AOD- and TOD-related values of root mean square error remain within 0.021 at 380, 440, 500, 675, 870, 1020, and 1640 nm wavelengths during the three field campaigns.