Electronic Journal of Qualitative Theory of Differential Equations (May 2020)
Global bifurcation and nodal solutions for homogeneous Kirchhoff type equations
Abstract
In this paper, we shall study unilateral global bifurcation phenomenon for the following homogeneous Kirchhoff type problem \begin{equation*} \begin{cases} -\left(\int_0^1 \left\vert u'\right\vert^2\,dx\right)u''=\lambda u^3+h(x,u,\lambda)&\text{in}\,\, (0,1),\\ u(0)=u(1)=0. \end{cases} \end{equation*} As application of bifurcation result, we shall determine the interval of $\lambda$ in which there exist nodal solutions for the following homogeneous Kirchhoff type problem \begin{equation*} \begin{cases} -\left(\int_0^1 \left\vert u'\right\vert^2\,dx\right) u''=\lambda f(x,u)&\text{in}\,\, (0,1),\\ u(0)=u(1)=0, \end{cases} \end{equation*} where $f$ is asymptotically cubic at zero and infinity. To do this, we also establish a complete characterization of the spectrum of a homogeneous nonlocal eigenvalue problem.
Keywords