Batteries (Sep 2019)

Incremental Capacity Analysis-Based Impact Study of Diverse Usage Patterns on Lithium-Ion Battery Aging in Electrified Vehicles

  • Meng Huang

DOI
https://doi.org/10.3390/batteries5030059
Journal volume & issue
Vol. 5, no. 3
p. 59

Abstract

Read online

Aging assessment is critical for lithium-ion batteries (LIBs) as the technology of choice for energy storage in electrified vehicles (EVs). Existing research is mainly focused on either increasing modeling precision or improving algorithm efficiency, while the significance of data applied for aging assessment has been largely overlooked. Moreover, reported studies are mostly confined to a specific condition without considering the impacts of diverse usage patterns on battery aging, which is practically challenging and can greatly affect battery degradation. This paper addresses these issues through incremental capacity (IC) analysis, which can both utilize data directly available from on-board sensors and interpret degradations from a physics-based perspective. Through IC analysis, the optimal health feature (HF) and the state of charge (SOC)-based optimal data profile for battery aging assessment have been identified. Four stress factors, i.e., depth-of-discharge (DOD), charging C-rate, operating mode, and temperature, have been selected to jointly characterize diverse usage patterns. Impact analysis of different stress factors through the optimal HF with the SOC-based optimal data profile from aging campaign experiments have generated practical guidance on usage patterns to improve battery health monitoring and lifetime control strategies.

Keywords