Frontiers in Marine Science (Feb 2021)

In situ Growth Rate Assessment of the Hexactinellid Sponge Asconema setubalense Using 3D Photogrammetric Reconstruction

  • Elena Prado,
  • Javier Cristobo,
  • Augusto Rodríguez-Basalo,
  • Pilar Ríos,
  • Cristina Rodríguez-Cabello,
  • Francisco Sánchez

DOI
https://doi.org/10.3389/fmars.2021.612613
Journal volume & issue
Vol. 8

Abstract

Read online

We describe the first application of a non-invasive and novel approach to estimate the growth rate of Asconema setubalense (Porifera, Hexactinellida) through the use of 3D photogrammetric methodology. Structure-from-Motion techniques (SfM) were applied to videos acquired with the Politolana ROTV in the El Cachucho Marine Protected Area (MPA) (Cantabrian Sea) on three different dates (2014, 2017, and 2019) over six years. With these data, a multi-temporal study was conducted within the framework of MPA monitoring. A complete 3D reconstruction of the deep-sea floor was achieved with Pix4D Mapper Pro software for each date. Having 3D point clouds of the study area enabled a series of measurements that were impossible to obtain in 2D images. In 3D space, the sizes (height, diameter, cup-perimeter, and cup-surface area) of several A. setubalense specimens were measured each year. The annual growth rates recorded ranged from zero (“no growth”) for a large size specimen, to an average of 2.2 cm year–1 in cup-diameter, and 2.5 cm year–1 in height for developing specimens. Von Bertalanffy growth parameters were estimated. Taking into account the size indicators used in this study and based on the von Bertalanffy growth model, this sponge reaches 95% maximum size at 98 years of age. During the MPA monitoring program, a high number of specimens disappeared. This raised suspicions of a phenomenon affecting the survival of this species in the area. This type of image-based methodology does not cause damage or alterations to benthic communities and should be employed in vulnerable ecosystem studies and MPA monitoring.

Keywords