Journal of Ovarian Research (Apr 2023)

Developing four cuproptosis-related lncRNAs signature to predict prognosis and immune activity in ovarian cancer

  • Li Liu,
  • Qing Wang,
  • Jia-Yun Zhou,
  • Bei Zhang

DOI
https://doi.org/10.1186/s13048-023-01165-7
Journal volume & issue
Vol. 16, no. 1
pp. 1 – 15

Abstract

Read online

Abstract Background There has been a recent discovery of a new type of cell death produced by copper-iron ions, called Cuproptosis (copper death). The purpose of this study was to identify LncRNA signatures associated with Cuproptosis in ovarian cancer that could be used as prognostic indicators. Methods RNA sequencing (RNA-seq) profiles with clinicopathological data from TCGA database were used to select prognostic CRLs and then constructed prognostic risk model using multivariate regression analysis and LASSO algorithms. An independent dataset from GEO database was used to validate the prognostic performance. Combined with clinical factors, we further constructed a prognostic nomogram. In addition, tumor immune microenvironment, somatic mutation and drug sensitivity were analyzed using ssGSEA, GSVA, ESTIMATE and CIBERSORT algorithms. Result A total of 129 CRLs were selected whose expression levels were significantly related to expression levels of 10 cuproptosis-related genes. The univariate Cox regression analysis showed that 12 CRLs were associated with overall survival (OS). Using LASSO algorithms and multivariate regression analysis, we constructed a four-CRLs prognostic signature in the training dataset. Patients in the training dataset could be classified into high- or low-risk subgroups with significantly different OS (log-rank p < 0.001). The prognostic performance was confirmed in TCGA-OC cohort (log-rank p < 0.001) and an independent GEO cohort (log-rank p = 0.023). Multivariate cox regression analysis proved the four-CRLs signature was an independent prognostic factor for OC. Additionally, different risk subtypes showed significantly different levels of immune cells, signal pathways, and drug response. Conclusion We established a prognostic signature based on cuproptosis-related lncRNAs for OC patients, which will be of great value in predicting the prognosis patients and may provide a new perspective for research and individualized treatment.

Keywords