Entropy (Feb 2023)
Observation and Analysis of Ejector Hysteresis Phenomena in the Hydrogen Recirculation Subsystem of PEMFCs
Abstract
The optimization control and efficiency improvement of proton exchange membrane fuel cells (PEMFCs) are being paid more attention. Ejectors have been applied in PEMFC hydrogen recirculation subsystems due to the advantages of a simple structure and no power consumption. However, the hysteresis deviation of a proportional valve ejector is found in the loading and unloading processes such that the hysteresis phenomena can cause deviations in fuel cell control process and affect the power dynamic output stability of PEMFCs. This paper analyzes the causes and effects of proportional valve hysteresis phenomena through experiments and simulations. The results show that the resultant force of proportional valve armature is different in loading and unloading processes because of the hysteresis phenomena, and the maximum flow deviation is up to 0.42 g/s. The hysteresis phenomena of flow rate further cause a deviation of 68.7–89.3 kW in PEMFC power output. Finally, a control compensation model is proposed to effectively reduce the deviation. This study provides a reference for the control and optimization of PEMFC with ejector technology.
Keywords