Atmosphere (May 2021)

Sea Surface Temperature Variability over the Tropical Indian Ocean during the ENSO and IOD Events in 2016 and 2017

  • Sartaj Khan,
  • Shengchun Piao,
  • Guangxue Zheng,
  • Imran Ullah Khan,
  • David Bradley,
  • Shazia Khan,
  • Yang Song

DOI
https://doi.org/10.3390/atmos12050587
Journal volume & issue
Vol. 12, no. 5
p. 587

Abstract

Read online

2016 and 2017 were marked by strong El Niño and weak La Niña events, respectively, in the tropical East Pacific Ocean. The strong El Niño and weak La Niña events in the Pacific significantly impacted the sea surface temperature (SST) in the tropical Indian Ocean (TIO) and were followed by extreme negative and weak positive Indian Ocean Dipole (IOD) phases in 2016 and 2017, which triggered floods in the Indian subcontinent and drought conditions in East Africa. The IOD is an irregular and periodic oscillation in the Indian Ocean, which has attracted much attention in the last two decades due to its impact on the climate in surrounding landmasses. Much work has been done in the past to investigate global climate change and its impact on the evolution of IOD. The dynamic behind it, however, is still not well understood. The present study, using various satellite datasets, examined and analyzed the dynamics behind these events and their impacts on SST variability in the TIO. For this study, the monthly mean SST data was provided by NOAA Optimum Interpolation Sea Surface Temperature (OISST). SST anomalies were measured on the basis of 30-year mean daily climatology (1981–2010). It was determined that the eastern and western poles of the TIO play quite different roles during the sequence of negative and positive IOD phases. The analysis of air-sea interactions and the relationship between wind and SST suggested that SST is primarily controlled by wind force in the West pole. On the other hand, the high SST that occurred during the negative IOD phase induced local convection and westerly wind anomalies via the Bjerknes feedback mechanism. The strong convection, which was confined to the (warm) eastern equatorial Indian Ocean was accompanied by east–west SST anomalies that drove a series of downwelling Kelvin waves that deepened the thermocline in the east. Another notable feature of this study was its observation of weak upwelling along the Omani–Arabian coast, which warmed the SST by 1 °C in the summer of 2017 (as compared to 2016). This warming led to increased precipitation in the Bay of Bengal (BoB) region during the summer of 2017. The results of the present work will be important for the study of monsoons and may be useful in predicting both droughts and floods in landmasses in the vicinity of the Indian Ocean, especially in the Indian subcontinent and East African regions.

Keywords