Green Chemical Engineering (Sep 2024)

A review on the chemo-catalytic conversion of cellulose to bio-ethanol

  • Xiuzheng Zhuang,
  • Haiyong Wang,
  • Shugen Jiang,
  • Xiaohong Hu,
  • Tong Su,
  • Xinghua Zhang,
  • Longlong Ma

Journal volume & issue
Vol. 5, no. 3
pp. 276 – 289

Abstract

Read online

While the industry has produced sugar-derived ethanol from the conventional method of fermentation for hundreds of years, other effective routes involving the direct transformation of carbohydrates still remain extremely rare. Very recently, an innovative chemo-catalytic method driven by the aqueous-phase catalysis was created for the synthesis of cellulosic ethanol, making a great breakthrough in the common ways as it can theoretically utilize all of the carbon atoms in sugars with faster kinetics; up to now, results from the relevant studies have been accumulated to a certain extent, but the periodic conclusions in this field are unfortunately absent. For this reason, this work tries to offer an overview of the cellulosic ethanol produced by chemo-catalytic routes, highlighting the present knowledge in relation to the technical efficiency, catalytic mechanisms as well as practical applications. At first, the advanced progress on the increasing efficiency from a varied type of catalytic systems are extensively discussed, which involves the specific functions of hybrid components from different strategies; meanwhile, the general influences of processing conditions, such as the hydrothermal severity and aqueous environments, are also identified. Subsequently, possible mechanisms behind the chemo-catalytic processes are widely elaborated by analyzing a number of experimental cases associated with the reaction network and its kinetic models. After that, the actual effects of this technique on the real biomass are collected to identify the positive/negative interactions between multiple components, together with the potential solutions on the semi-continuous processes of pilot scale application. The techno-economic analysis (TEA) is also calculated and compared with other similar methods, such as fermentation and gasification. Finally, several proposals aimed at upgrading the whole chain of chemo-catalytic processes are clearly provided, which may function as a guideline for future studies on the production of bio-ethanol from lignocellulosic materials.

Keywords